Considere as seguintes afirmações:
I. Para um processo ARMA (1, 1) a função de autocorrelação parcial só é diferente de zero no lag 1.
II. Para um processo ARMA (1, 1), onde φ é o coeficiente autoregressivo e θ é o coeficiente de médias móveis, a região de admissibilidade é dada por |φ| < 1 e |θ| < 1.
III. De um modo geral, a análise espectral de séries temporais estacionárias decompõe a série em componentes senoidais com coeficientes aleatórios não-correlacionados.
IV. Um processo ARIMA (1, d ,1), onde d = 1, é estacionário.
Está correto o que se afirma APENAS em
I e II.
I, II e III.
I e III.
II e III.
II e IV.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...