Um fabricante faz dois tipos de lâmpadas. Seja X a variável aleatória que representa o tempo de vida do primeiro tipo e Y a variável aleatória que representa o tempo de vida do segundo tipo. Sabe-se que X e Y são independentes e que os respectivos desvios padrões populacionais dos dois tipos são iguais a 250 horas, cada um. Um comprador testou 36 lâmpadas do tipo X e 64 lâmpadas do tipo Y, obtendo 1.000 horas e 1.200 horas de duração média para o tipo X e o tipo Y, respectivamente. Foram formuladas as seguintes hipóteses: H0: μx = μy (hipóteses nula, isto é, a vida média dos tipos X e Y é a mesma) e H1: μx ≠ μy (hipótese alternativa). Considerou-se para o teste que o tamanho das populações é infinito, além de serem normalmente distribuídas e que na distribuição normal padrão (Z) a probabilidade P (Z ≥ zα) = α (0 < α 0,5). Então, pode-se afirmar que a um nível de significância de 2 α
H0 não será rejeitada para zα = 3.
H0 será rejeitada para
H0 será rejeitada para
H0 não será rejeitada, para − 4 < zα < 4.
H0 será rejeitada para qualquer valor de devido aos valores obtidos pelas amostras.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...