Uma instituição lançará uma campanha nacional entre as indústrias brasileiras com o objetivo de reduzir a probabilidade de ocorrência de acidentes de trabalho. Atualmente, a probabilidade de um operário sofrer algum tipo de acidente é igual a 0,06. Após o lançamento da campanha, espera-se que a probabilidade de um operário sofrer algum tipo de acidente passe a ser inferior a 0,02. Antes de essa empresa lançar a campanha em âmbito nacional, ela realizou um estudo-piloto em um pequeno número de indústrias, adotando o seguinte plano amostral. De um cadastro de indústrias, foram selecionadas aleatoriamente 2 indústrias e nelas aplicaram-se as campanhas propostas pela instituição, envolvendo todos os operários que lá trabalhavam na ocasião do estudo. Essas indústrias são chamadas "caso". Também foram selecionadas aleatoriamente outras 2 indústrias, mas nelas as campanhas não foram aplicadas. Essas são chamadas "controle". Ao longo de um ano foram registrados os números de operários que sofreram algum tipo de acidente nas quatro indústrias, segundo a tabela abaixo.
Com base nas informações apresentadas no texto e na tabela, julgue os itens que se seguem.
Considere-se que a ocorrência de acidentes segue uma distribuição de Poisson e a hipótese nula (H0) do teste é: "a probabilidade de um operário sofrer algum tipo de acidente é igual a 0,06, mas se um operário for exposto à campanha, a probabilidade de ele, operário, sofrer algum tipo de acidente é reduzida para 0,02". A hipótese alternativa (Ha) é: "a probabilidade de um operário sofrer algum tipo de acidente é igual a 0,06, independentemente de o operário ter sido ou não exposto à campanha". Nessa situação, se a estatística qui-quadrado sob H0 for igual a Q0 e se a estatística qui-quadrado sob Ha for igual a Qa, então é correto afirmar que a razão Q0/Qa é a estatística de razão de verossimilhança para o teste em questão.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...