Lista completa de Questões sobre Geral para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
A potência de um ponto P em relação a um círculo é o produto das distâncias de P aos dois pontos de interceptação na circunferência da uma secante orientada que passa por P. Com base nessa afirmação e tomando como referência as figuras acima, julgue os itens seguintes.
O eixo radical é uma reta que pode ser inclinada em relação à reta suporte que une os centros de duas circunferências.
Tendo como referência as figuras de I a IV acima, julgue os itens que seguem.
A figura I prova que, em um triângulo, as mediatrizes dos lados se cortam em um ponto eqüidistante dos seus três vértices que se chama circuncentro.
Tendo como referência as figuras de I a IV acima, julgue os itens que seguem.
Quando as medianas que partem dos vértices de um triângulo se cortam sobre um ponto que é eqüidistante dos lados, esse ponto é chamado incentro.
Tendo como referência as figuras de I a IV acima, julgue os itens que seguem.
Na figura II, o ponto notável b define o centro do círculo que pode ser inscrito no triângulo.
Tendo como referência as figuras de I a IV acima, julgue os itens que seguem.
Na figura IV, as medianas encontram-se em um ponto d chamado medicentro.
A partir das figuras acima, julgue os itens subseqüentes.
Segundo a figura I, para o correto desenho de um pentágono regular, é necessário definir previamente o raio de uma circunferência e também a dimensão do segmento AB que compõe o lado do pentágono.
A partir das figuras acima, julgue os itens subseqüentes.
Observa-se na figura I o processo de construção de um pentágono regular que inclui o traçado de três circunferências de mesmo raio a partir das quais são definidos todos os vértices.
A partir das figuras acima, julgue os itens subseqüentes.
Não se pode construir um polígono regular de oito lados que seja inscritível em uma circunferência.
A partir das figuras acima, julgue os itens subseqüentes.
A figura II mostra que, para se construir um polígono de n lados partindo de uma circunferência de raio dado, faz-se necessária a divisão da mesma em um número de partes iguais ao dos lados do polígono que se deseja construir.
Com base nas figuras acima, julgue os itens que seguem.
Considere que na figura I existe um feixe de circunferências, cujos centros são os pontos destacados na linha horizontal. Admitindo a reta D como eixo radical e potência nula em I, é correto afirmar que o ponto I é ponto de contato comum a todas as circunferências do feixe e que a reta D é tangente às circunferências desse conjunto.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...