Lista completa de Questões sobre Geral para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
Suponha que o número de consultas a um banco de dados, disponível em um Tribunal Regional do Trabalho, tenha distribuição de Poisson com taxa média de 4 consultas por hora. A probabilidade de, na próxima meia hora, ocorrer mais de uma consulta, sabendo-se que na próxima meia hora é certa a ocorrência de, pelo menos, uma consulta é
Dados: e−2 = 0,135 e−4 = 0,018Um lote é formado por 10 artigos bons e 5 com pequenos defeitos. Uma amostra aleatória, sem reposição, de 3 artigos é selecionada do lote. Se a amostra só tiver artigos bons, o lote é vendido por R$ 455,00; se a amostra tiver 2 artigos bons, o lote é vendido por R$ 273,00 e se a amostra tiver menos do que 2 artigos bons, o lote é vendido por R$ 182,00. Nessas condições o preço médio de venda do lote é, em reais, igual a
Sabe-se que a variável aleatória contínua X tem distribuição uniforme no intervalo [a, b] com b > a, que sua média é 1 e que sua variância é igual à variância de uma distribuição t de Student com 8 graus de liberdade. Nessas condições, P(X < 1,5) é igual a
O tempo de espera, em meses, para a concessão de certa licença ambiental em um órgão responsável por tais licenças é uma variável aleatória X com distribuição exponencial com média de 2 meses. A probabilidade condicional de X ser superior a 2 meses, sabendo-se que X foi, no máximo, igual a 3 meses é igual a
Dados: e−1 = 0,368 e−1,5 = 0,223 e−2 = 0,135Sejam X e Y duas variáveis aleatórias independentes. Sabe-se que X tem distribuição binomial com parâmetros n = 2 e p = 0,3 e que Y tem distribuição uniforme discreta no intervalo, fechado, de números inteiros [2, 4]. Nessas condições P(X + Y ≤ 4) é igual a
Atenção: Para responder às questões de números 38 a 40 use, dentre as informações dadas a seguir, as que julgar apropriadas.
Se Z tem distribuição normal padrão, então: P(Z < 0,30) = 0,62, P(Z < 1,04) = 0,85, P(Z < 1,20) = 0,88, P(Z < 1,28) = 0,90, P(Z < 1,64) = 0,95, P(Z < 2) = 0,98, O peso de determinado produto é uma variável aleatória X com distribuição normal com média μ (kg) e variância σ2(kg)2. Sabese que 90% dos valores de X estão compreendidos entre (μ − 0,41)kg e (μ + 0,41)kg e que 85% dos valores de X são superiores a 1 kg. Nessas condições, o valor de μ, em kg, éAtenção: Para responder às questões de números 38 a 40 use, dentre as informações dadas a seguir, as que julgar apropriadas.
Se Z tem distribuição normal padrão, então: P(Z < 0,30) = 0,62, P(Z < 1,04) = 0,85, P(Z < 1,20) = 0,88, P(Z < 1,28) = 0,90, P(Z < 1,64) = 0,95, P(Z < 2) = 0,98,{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...