Lista completa de Questões de Matemática Financeira do ano 2012 para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
Matemática Financeira - Taxas/Capitalização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2012
Marcos tomou R$ 200.000,00 emprestados de uma instituição financeira, comprometendo-se a quitar esse financiamento em dez anos, pelo sistema Price de amortização, à taxa nominal anual de 6% capitalizada mensalmente. Marcos comprometeu-se a saldar as prestações do financiamento mediante pagamento consignado em folha, conseguindo, com isso, a redução da taxa nominal de juros, que passou de 6% para 3% ao ano. Contudo, para que esse benefício lhe fosse concedido, o valor da prestação de seu financiamento não deveria ultrapassar a margem consignável, que é de 30% do seu rendimento, que consiste em R$ 7.500,00. No contrato de empréstimo, os valores iniciais das prestações foram calculados pelo sistema Price e sofreram reajustes mensais decorrentes da inflação acumulada. Ao longo do período de vigência do financiamento, a inflação apresentou índices equivalentes 0,5% ao mês e Marcos não teve reajuste salarial.
Considerando que 1,0617 é o valor aproximado para 1,00512, julgue os itens a seguir, referentes à situação hipotética acima.
Em razão de as prestações do financiamento terem sido quitadas mediante pagamento consignado em folha, a taxa efetiva anual de juros paga por Marcos foi reduzida pela metade.
Matemática Financeira - Taxas/Capitalização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2012
julgue os itens seguintes, relativos à situação hipotética acima.
A taxa mensal efetivamente paga por Pedro no citado financiamento foi de 0,5%.
Matemática Financeira - Taxas/Capitalização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2012
Considere que uma operação de crédito tenha sido contratada à taxa nominal de 15% ao ano, com capitalização quadrimestral. Nesse caso hipotético, a taxa efetiva anual desse financiamento é
inferior a 15,20%.
superior a 15,20% e inferior a 15,60%.
superior a 15,60% e inferior a 16%.
superior a 16% e inferior a 16,40%.
superior a 16,40%.
Numa aplicação financeira, no regime de juros simples, a transformação do prazo específico da taxa para o de capitalização é chamada taxa proporcional de juros, taxa linear ou taxa nominal.
A aludida taxa proporcional de juros, do regime de juros simples, é obtida peladivisão entre a taxa de juros considerada na operação e a quantidade de períodos de capitalização.
divisão do total dos juros apurados na operação pelo valor inicial aplicado.
divisão do montante obtido na operação pelo valor inicial aplicado.
multiplicação da taxa de juros considerada na operação e a quantidade de períodos de capitalização.
redução do montante obtido na operação do valor inicial aplicado.
Um investidor analisa duas opções para aplicar uma quantia de valor igual a R$ 40.000,00:
I. Aplicar toda a quantia a juros simples durante o prazo de 16 meses.
II. Aplicar toda a quantia a juros compostos, durante 1 ano, a uma taxa de 6% ao semestre.
Se o valor dos juros das duas opções são iguais, então a taxa anual correspondente da primeira opção é
8,16%
9,27%.
9,60%.
10,20%.
10,80%.
Uma taxa de juros nominal de 21% ao trimestre, com juros capitalizados mensalmente, apresenta uma taxa de juros efetiva, trimestral de, aproximadamente,
21,7%.
22,5%.
24,8%.
32,4%.
33,7%.
A cotação de uma ação da empresa Y subiu 15% em um mês (mês 1). Ao final do segundo mês (mês 2) havia subido 15% em relação ao final do mês 1. No término do terceiro mês (mês 3) a cotação havia caído 10% em relação ao final do mês 2. Encerrado o quarto mês (mês 4) a cotação da ação havia caído 20% em relação ao término do mês 3. Comparando a cotação da ação ao final do mês 4 com a cotação inicial, pode-se afirmar que:
as cotações são praticamente iguais com variação entre elas menor que 0,2% em relação à cotação maior.
as cotações são exatamente iguais.
a cotação é, aproximadamente, 5% menor do que a cotação inicial.
a cotação é, aproximadamente, 5% maior do que a cotação inicial.
a cotação é, aproximadamente, 8% maior do que a cotação inicial.
Um indivíduo tomou um empréstimo junto a um banco no valor de R$ 2.000,00. O banco oferece o seguinte contrato: o indivíduo deverá quitar o empréstimo depois de dois meses, pagando o valor total de R$ 2.700,00, sendo que R$ 500,00 devem ser mantidos como saldo da conta. Suponha que a taxa de inflação no período desse contrato seja de 20% e considere um regime de capitalização simples.
As taxas mensais de juros nominal, real e efetiva, serão, respectivamente:
35% , 80% e 50%
70% , 160% e 100%
17,5% , 40% e 25%
35% , 40% e 50%
16,2% , 34,2% e 22,5%
Matemática Financeira - Taxas/Capitalização - Fundação Escola Superior do Ministério Público do Estado do RJ (FEMPERJ) - 2012
Dada a taxa nominal de 100% ao ano, a correspondente taxa efetiva com capitalização semestral é de:
50%
110%
120%
125%
150%
Matemática Financeira - Taxas/Capitalização - Fundação Professor Carlos Augusto Bittencourt (FUNCAB) - 2012
A taxa equivalente anual correspondente a cinco por cento ao quadrimestre é da ordem de:
15,90%.
16,31%
15,76%.
14,91%
15,00%.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...