Lista completa de Questões de Química do ano 2004 para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
Sabendo que o E0 para a semi-reação Eu3+ + e- 6 Eu2+ é igual a -0,43 V, julgue os itens a seguir, considerando o texto de referência.
Em uma solução de európio, cujo potencial eletroquímico para a semireação Eu 3+ + e- 6 Eu2+ seja zero, predominará a espécie química Eu3+ .
Considerando que o EDTA possui 2 grupos amino que podem ser protonados e 4 grupos carboxílicos que podem ser desprotonados, então ele pode ser considerado um ácido fraco hexaprótico. Representando a forma desprotonada do EDTA pela letra Y, as várias formas que o EDTA pode assumir em solução aquosa são as seguintes: H6Y2+ , H5Y+ , H4Y, H3Y- , H2Y2- , HY3- e Y4- . Nesse sentido, a partir do texto de referência e sabendo que, para o EDTA, pKa1 = 0,0, pKa2 = 1,5, pKa3 = 2,0, pKa4 = 2,68, pKa5 = 6,11 e pKa6 = 10,17, julgue o item seguinte.
Em uma solução aquosa de EDTA em pH 7,0, a espécie química mais abundante, entre as citadas, é H2Y2- .
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Na fluorescência do complexo lipídio-EDTA-Eu, a diferença entre a energia absorvida e a emitida é proporcional à diferença entre seus respectivos comprimentos de onda.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Durante a emissão fluorescente, elétrons do fluoróforo no estado S2 emitem fótons de energia Eem ao retornarem ao estado inicial S0, conforme esquematizado no diagrama abaixo.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Qualquer substância pode ser analisada por meio da técnica de fluorescência, desde que essa substância seja excitada com quantidade de energia suficiente.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Sabendo que o isótopo 63Eu152 é capaz de emitir partículas β produzindo o elemento químico gadolínio (64Gd152) e que a meia-vida desse isótopo radioativo é de 13 anos e admitindo que , então, no decurso de 1 ano, menos de 6% de todo o 63Eu152 contido em uma amostra terá se transformado no isótopo 64Gd152.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem. Admitindo que a reação de complexação entre o íon európio e o EDTA aconteça em uma única etapa, então a lei de velocidade para essa reação é dada por v = [EDTA][Eu], na qual , em que t representa a variável tempo.Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Sabendo que a 20 ºC e μ = 0,1 mol/L, as constantes de formação dos complexos Fe3+ -EDTA e Eu3+ -EDTA são iguais a 1,3 × 1025 e 1,1 × 1018, respectivamente, então, nessas condições, o íon Fe3+ não é interferente do método em apreço.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Sabendo que M(H) = 1 g/mol, M(C) = 12 g/mol, M(N) = 14 g/mol, M(O) = 16 g/mol e M(Eu) = 152 g/mol e supondo que a impressão digital seja formada exclusivamente pelo lipídio de fórmula C27H50O6, então 0,5 mg de complexo EDTA-Eu é suficiente para reagir com pelo menos a metade de todas as moléculas contidas em uma impressão digital de 1 mg.
Texto para os itens de 51 a 65
Clay E. Allred e E. Roland Menzel (A Novel Europiumbioconjugate Method for Latent Fingerprint Detection. In: Forensic Science International, n.º 85, Elsevier Science Ireland Ltda., 1997, p. 83-94) desenvolveram um novo método de detecção de impressão digital latente com base em uma reação específica entre o íon európio e lipídios. A aplicabilidade do método, tanto para superfícies porosas como lisas, a ausência de solventes clorofluorcarbônicos, a sensibilidade, a rapidez e o baixo custo são fatores que podem tornar essa abordagem o principal método de detecção de impressão digital em um futuro próximo. Nela, o ácido etilenodiaminotetracético (EDTA) é usado como ligante de conjugação que forma um complexo não-fluorescente com o íon európio (etapa I). Esse complexo é capaz de ligar-se covalentemente a lipídios da impressão digital (etapa II), na proporção de uma molécula de EDTA-Eu para cada molécula de lipídio. Nessa reação, algumas ligações entre o íon európio e o EDTA são desfeitas, expondo parcialmente o íon európio, que se torna, então, disponível para complexar com outro ligante, como a 1,10-fenantrolina ou a tenoiltrifluoroacetona (TFA), capaz de sensibilizar o íon európio a ponto de torná-lo fluorescente (etapa III). Após esse tratamento, a impressão digital torna-se nitidamente visível sob excitação por radiação ultravioleta. A figura I acima mostra o esquema dessas reações e a figura II mostra a estrutura de um complexo metal-EDTA genérico, em que a letra M representa o íon metálico.
Considerando as informações das figuras e do texto acima, julgue os itens que se seguem.Sendo o EDTA um ácido, é correto afirmar que as suas soluções aquosas contêm, como cátion, apenas os íons H3O+, reagem com bases formando sais e água, são incolores na presença de fenolftaleína, fazem o papel de tornassol azul ficar vermelho, conduzem corrente elétrica, são capazes de corroer metais e possuem sabor azedo.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...