Lista completa de Questões de Raciocínio lógico da Escola de Administração Fazendária (ESAF) para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
Uma estranha clínica veterinária atende apenas cães e gatos. Dos cães hospedados, 90% agem como cães e 10% agem como gatos. Do mesmo modo, dos gatos hospedados 90% agem como gatos e 10% agem como cães. Observou-se que 20% de todos os animais hospedados nessa estranha clínica agem como gatos e que os 80% restantes agem como cães. Sabendo-se que na clínica veterinária estão hospedados 10 gatos, o número de cães hospedados nessa estranha clínica é:
50
10
20
40
70
Quatro casais reúnem-se para jogar xadrez. Como há apenas um tabuleiro, eles combinam que: a) nenhuma pessoa pode jogar duas partidas seguidas; b) marido e esposa não jogam entre si. Na primeira partida, Celina joga contra Alberto. Na segunda, Ana joga contra o marido de Júlia. Na terceira, a esposa de Alberto joga contra o marido de Ana. Na quarta, Celina joga contra Carlos. E na quinta, a esposa de Gustavo joga contra Alberto. A esposa de Tiago e o marido de Helena são, respectivamente:
Celina e Alberto
Ana e Carlos
Júlia e Gustavo
Ana e Alberto
Celina e Gustavo
Um professor de Lógica percorre uma estrada que liga, em linha reta, as vilas Alfa, Beta e Gama. Em Alfa, ele avista dois sinais com as seguintes indicações: "Beta a 5 km" e "Gama a 7 km". Depois, já em Beta, encontra dois sinais com as indicações: "Alfa a 4 km" e "Gama a 6 km". Ao chegar a Gama, encontra mais dois sinais: "Alfa a 7 km" e "Beta a 3 km". Soube, então, que, em uma das três vilas, todos os sinais têm indicações erradas; em outra, todos os sinais têm indicações corretas; e na outra um sinal tem indicação correta e outro sinal tem indicação errada (não necessariamente nesta ordem). O professor de Lógica pode concluir, portanto, que as verdadeiras distâncias, em quilômetros, entre Alfa e Beta, e entre Beta e Gama, são, respectivamente:
5 e 3
5 e 6
4 e 6
4 e 3
4 e 3
Três pessoas, Ana, Bia e Carla, têm idades (em número de anos) tais que a soma de quaisquer duas delas é igual ao número obtido invertendose os algarismos que formam a terceira. Sabe-se, ainda, que a idade de cada uma delas é inferior a 100 anos (cada idade, portanto, sendo indicada por um algarismo da dezena e um da unidade). Indicando o algarismo da unidade das idades de Ana, Bia e Carla, respectivamente, por A1, B1 e C1; e indicando o algarismo da dezena das idades de Ana, Bia e Carla, respectivamente, por A2, B2 e C2, a soma das idades destas três pessoas é igual a:
3 (A2+B2+C2)
10 (A2+B2+C2)
99 – (A1+B1+C1)
11 (B2+B1)
3 (A1+B1+C1)
Pedro e Paulo saíram de suas respectivas casas no mesmo instante, cada um com a intenção de visitar o outro. Ambos caminharam pelo mesmo percurso, mas o fizeram tão distraidamente que não perceberam quando se cruzaram. Dez minutos após haverem se cruzado, Pedro chegou à casa de Paulo. Já Paulo chegou à casa de Pedro meia hora mais tarde (isto é, meia hora após Pedro ter chegado à casa de Paulo). Sabendo que cada um deles caminhou a uma velocidade constante, o tempo total de caminhada de Paulo, de sua casa até a casa de Pedro, foi de
60 minutos
50 minutos
80 minutos
90 minutos
120 minutos
Três amigas encontram-se em uma festa. O vestido de uma delas é azul, o de outra é preto, e o da outra é branco. Elas calçam pares de sapatos destas mesmas três cores, mas somente Ana está com vestido e sapatos de mesma cor. Nem o vestido nem os sapatos de Júlia são brancos. Marisa está com sapatos azuis. Desse modo,
o vestido de Júlia é azul e o de Ana é preto
o vestido de Júlia é branco e seus sapatos são pretos.
os sapatos de Júlia são pretos e os de Ana são brancos.
os sapatos de Ana são pretos e o vestido de Marisa é branco
o vestido de Ana é preto e os sapatos de Marisa são azuis.
Uma escola, que oferece apenas um curso diurno de Português e um curso noturno de Matemática, possui quatrocentos alunos. Dos quatrocentos alunos, 60% estão matriculados no curso de Português. Dos que estão matriculados no curso de Português, 50% estão matriculados também no curso de Matemática. Dos matriculados no curso de Matemática, 15% são paulistas. Portanto, o número de estudantes matriculados no curso de Matemática e que são paulistas é:
42
24
18
84
36
Paulo e Roberto foram indicados para participarem de um torneio de basquete. A probabilidade de Paulo ser escolhido para participar do torneio é 3/5. A probabilidade de Roberto ser escolhido para participar do mesmo torneio é 1/5. Sabendo que a escolha de um deles é independente da escolha do outro, a probabilidade de somente Paulo ser escolhido para participar do torneio é igual a:
4/25
10/25
12/25
3/5
4/5
Augusto, Vinicius e Romeu estão no mesmo vértice de um polígono regular. Num dado momento, os três começam a caminhar na borda do polígono. Todos os três caminham em velocidades constantes, sendo que a velocidade de Augusto é o dobro da de Vinicius e o quádruplo da de Romeu. Augusto desloca-se em sentido oposto ao de Vinicius e ao de Romeu. Após um certo tempo, Augusto e Vinicius encontram-se num determinado vértice. Logo a seguir, exatamente dois vértices depois, encontram-se Augusto e Romeu. O número de arestas do polígono é:
10
15
12
14
11
Raciocínio lógico - Disjunção: p ou q (representação p v q) - Escola de Administração Fazendária (ESAF) - 2003
André é inocente ou Beto é inocente. Se Beto é inocente, então Caio é culpado. Caio é inocente se e somente se Dênis é culpado. Ora, Dênis é culpado. Logo
Caio e Beto são inocentes
André e Caio são inocentes
André e Beto são inocentes
Caio e Dênis são culpados
André e Dênis são culpados
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...