Questões sobre Geometria Plana

Lista completa de Questões sobre Geometria Plana para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.

Encontre o valor aproximado do seno do ângulo ? do triângulo abaixo.


    A) 0,38.

    B) 0,92.

    C) 0,41.

    D) 1,24.

Escreva a equação geral da circunferência, que tem centro C (-2, 1) e raio r = ?5.

    A) x² + y² + 4x - 2y =0.

    B) x² + y² - 4x + 2y - 1 =0.

    C) x² - y² + 5x - y =0.

    D) x² - y² - 4x + y -2 =0.

    E) 2x² - y² + 4x - y -5 =0.

O Pentágono é a sede do Departamento de Defesa dos Estados Unidos, sendo um símbolo das Forças Armadas dos EUA, o Pentágono é frequentemente utilizado metonimicamente para se referir ao Departamento de Defesa. Qual dos polímeros tem o formato do pentágono?

    A)



    B)



    C)



    D)



Determine o perímetro de um triangulo retângulo cujo cateto adjacente mede 12 cm e seu cosseno é igual a 0,8.

    A) 36.

    B) 48.

    C) 60.

    D) 72.

    E) 90.

A administração municipal deseja construir a seguinte praça:


Usando o valor para ? = 3,14 , a área da praça será?

    A) 113,04 m2 .

    B) 1.340,36 m2 .

    C) 1.017,36 m2 .

    D) 2.025,46 m2 .

Uma praça está inscrita em uma área retangular cujos lados medem 300 m e 500 m, conforme a figura abaixo. Calculando a área da praça, quanto obtemos? Note que a praça é referente à área sombreada.

    A) 138.600 cm²

    B) 141.600 cm²

    C) 147.000 cm².

    D) 128.300 cm²

    E) 148.600 cm².

Na composição de custos de um serviço de pintura de parede orçado por metro quadrado, o coeficiente do pintor é 1,5 hora, e o do ajudante é de 3,0 horas. A empresa costuma trabalhar com uma equipe formada por 1 pintor e 2 ajudantes.
Com base na situação hipotética precedente, é correto afirmar que o tempo esperado para que a equipe da empresa execute e conclua a pintura de 1 m2 de parede é de

    A) 3 horas.

    B) 4,5 horas.

    C) 2,25 horas.

    D) 1,5 hora.

    E) 9 horas.

Teorema de Pitágoras


O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam. Assim, o teorema de Pitágoras também pode ser enunciado como uma relação entre áreas: em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos.

Para ambos os enunciados anteriormente mencionados, pode-se equacionar: c² = b² + a², onde “c” representa o comprimento da hipotenusa, e “a” e “b” representam os comprimentos dos outros dois lados.

A demonstração do teorema de Pitágoras utilizando a comparação de áreas pode ser feita da seguinte forma:

1. Desenha-se um quadrado de lado b + a;

2. Subdivide-se este quadrado em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”: Traça-se dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado;

3. Divide-se cada um destes dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Chama-se “c” o comprimento de cada diagonal;

4. A área da região que resta ao retirar-se os quatro triângulos retângulos é igual a b² + a²;

5. Desenha-se agora o mesmo quadrado de lado b + a, mas coloca-se os quatro triângulos retângulos noutra posição dentro do quadrado: a posição que deixa desocupada uma região que é um quadrado de lado c.

6. Assim, a área da região formada quando os quatro triângulos retângulos são retirados é igual a c².

Como b² + a² representa a área do quadrado maior subtraída da soma das áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c². Ou seja: num triângulo retângulo o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.


Adaptado. Disponível em: https://bit.ly/2QiNr3C
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:

I. De acordo com o texto, na geometria euclidiana, o teorema de Pitágoras afirma que, em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

II. O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo isósceles, de acordo com o texto.

III. O 6º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é verificar que a área da região formada quando os quatro triângulos retângulos são retirados é igual a c², de acordo com o texto.

Marque a alternativa CORRETA:

    A) Nenhuma afirmativa está correta.

    B) Apenas uma afirmativa está correta.

    C) Apenas duas afirmativas estão corretas.

    D) Todas as afirmativas estão corretas.

Teorema de Pitágoras


O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam. Assim, o teorema de Pitágoras também pode ser enunciado como uma relação entre áreas: em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos.

Para ambos os enunciados anteriormente mencionados, pode-se equacionar: c² = b² + a², onde “c” representa o comprimento da hipotenusa, e “a” e “b” representam os comprimentos dos outros dois lados.

A demonstração do teorema de Pitágoras utilizando a comparação de áreas pode ser feita da seguinte forma:

1. Desenha-se um quadrado de lado b + a;

2. Subdivide-se este quadrado em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”: Traça-se dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado;

3. Divide-se cada um destes dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Chama-se “c” o comprimento de cada diagonal;

4. A área da região que resta ao retirar-se os quatro triângulos retângulos é igual a b² + a²;

5. Desenha-se agora o mesmo quadrado de lado b + a, mas coloca-se os quatro triângulos retângulos noutra posição dentro do quadrado: a posição que deixa desocupada uma região que é um quadrado de lado c.

6. Assim, a área da região formada quando os quatro triângulos retângulos são retirados é igual a c².

Como b² + a² representa a área do quadrado maior subtraída da soma das áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c². Ou seja: num triângulo retângulo o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.


Adaptado. Disponível em: https://bit.ly/2QiNr3C
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:

I. No texto, o 2º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas exige que o quadrado seja subdividido em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”. Assim, deve-se traçar dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado, de acordo com o texto.

II. O 3º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas, de acordo com o texto, é dividir cada um dos dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Nesse caso, chama-se “c” o comprimento de cada diagonal.

III. O 1º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é desenhar um cubo de lado b + a, de acordo com o texto.

Marque a alternativa CORRETA:

    A) Nenhuma afirmativa está correta.

    B) Apenas uma afirmativa está correta.

    C) Apenas duas afirmativas estão corretas.

    D) Todas as afirmativas estão corretas.

Teorema de Pitágoras


O teorema de Pitágoras é uma relação matemática entre os comprimentos dos lados de qualquer triângulo retângulo. Na geometria euclidiana, o teorema afirma que em qualquer triângulo retângulo, o quadrado do comprimento da hipotenusa é igual à soma dos quadrados dos comprimentos dos catetos.

Por definição, a hipotenusa é o lado oposto ao ângulo reto, e os catetos são os dois lados que o formam. Assim, o teorema de Pitágoras também pode ser enunciado como uma relação entre áreas: em qualquer triângulo retângulo, a área do quadrado cujo lado é a hipotenusa é igual à soma das áreas dos quadrados cujos lados são os catetos.

Para ambos os enunciados anteriormente mencionados, pode-se equacionar: c² = b² + a², onde “c” representa o comprimento da hipotenusa, e “a” e “b” representam os comprimentos dos outros dois lados.

A demonstração do teorema de Pitágoras utilizando a comparação de áreas pode ser feita da seguinte forma:

1. Desenha-se um quadrado de lado b + a;

2. Subdivide-se este quadrado em quatro retângulos, sendo dois deles quadrados de lados, respectivamente, “a” e “b”: Traça-se dois segmentos de reta paralelos a dois lados consecutivos do quadrado, sendo cada um deles interno ao quadrado e com o mesmo comprimento que o lado do quadrado;

3. Divide-se cada um destes dois retângulos em dois triângulos retângulos, traçando-se as diagonais. Chama-se “c” o comprimento de cada diagonal;

4. A área da região que resta ao retirar-se os quatro triângulos retângulos é igual a b² + a²;

5. Desenha-se agora o mesmo quadrado de lado b + a, mas coloca-se os quatro triângulos retângulos noutra posição dentro do quadrado: a posição que deixa desocupada uma região que é um quadrado de lado c.

6. Assim, a área da região formada quando os quatro triângulos retângulos são retirados é igual a c².

Como b² + a² representa a área do quadrado maior subtraída da soma das áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c². Ou seja: num triângulo retângulo o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.


Adaptado. Disponível em: https://bit.ly/2QiNr3C
Leia o texto 'Teorema de Pitágoras' e, em seguida, analise as afirmativas abaixo:

I. Segundo o texto, o 4º passo para a demonstração do teorema de Pitágoras utilizando a comparação de áreas é verificar que a área da região que resta, ao retirar-se os quatro triângulos retângulos, é igual a b² – a².

II. Como b² + a² representa a área do quadrado maior somada às áreas dos triângulos retângulos, e c² representa a mesma área, então b² + a² = c², de acordo com o texto.

III. Por definição, a hipotenusa é o lado oposto ao ângulo agudo, e os catetos são os dois lados que o formam, de acordo com o texto.

Marque a alternativa CORRETA:

    A) Nenhuma afirmativa está correta.

    B) Apenas uma afirmativa está correta.

    C) Apenas duas afirmativas estão corretas.

    D) Todas as afirmativas estão corretas.

Provas e Concursos

O Provas e Concursos é um banco de dados de questões de concursos públicos organizadas por matéria, assunto, ano, banca organizadora, etc

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Provas e Concursos
0%
Aguarde, enviando solicitação!

Aguarde, enviando solicitação...