Lista completa de Questões de Matemática Financeira do ano 2009 para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Um cliente do BB contratou uma operação de crédito no valor de R$ 200.000,00, com taxa de juros de 1,2% ao mês e previsão de pagamento em 12 parcelas mensais, pelo sistema francês de amortização.
Nesse caso, considerando 11,114 como valor aproximado do fator do valor presente de tal empréstimo, o valor total, em reais, que o cliente pagará ao banco ao final do prazo será
inferior a 214.000.
superior a 214.000 e inferior a 215.000.
superior a 215.000 e inferior a 216.000.
superior a 216.000 e inferior a 217.000.
superior a 217.000.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Se uma dívida de R$ 8.000,00 for paga pelo sistema de amortização constante (SAC), em cinco prestações mensais, consecutivas, com a primeira prestação vencendo um mês após a dívida ter sido contraída, e a taxa mensal de juros for de 5%, então, o valor da quarta prestação, em reais, será
inferior a 1.800.
superior a 1.800 e inferior a 1.850.
superior a 1.850 e inferior a 1.900.
superior a 1.900.
Um financiamento no valor de R$76.060,80 deve ser pago em 15 prestações semestrais iguais de R$10.000,00, vencendo as prestações ao fim de cada semestre. Qual o valor mais próximo da parcela que corresponde à amortização do saldo devedor, na segunda prestação?
R$ 2.394,00
R$ 7.103,00
R$ 2.897,00
R$ 2.633,00
R$ 7.606,00
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Considerando que um empréstimo de R$ 24.000,00 valor que o banco entregou no ato, tenha sido quitado em 6 prestações anuais e consecutivas, a uma taxa de juros compostos de 5% ao ano, e que a primeira prestação tenha sido paga um ano após a tomada do empréstimo, julgue os itens que se seguem.
Se tiver sido utilizado o sistema de amortização constante, então o valor da primeira prestação paga foi inferior a R$ 5.000,00.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Para a compra de determinado bem, será tomado um empréstimo de R$ 189.000,00. Esse empréstimo será pago pelo Sistema Francês de Amortização (Tabela Price), sem carência, em 24 prestações, à taxa de juros de 2% a.m., sendo que a primeira prestação vence 1 mês após a contratação do empréstimo.
O saldo devedor após o pagamento da segunda prestação é inferior a R$ 170.000,00.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Para a compra de determinado bem, será tomado um empréstimo de R$ 189.000,00. Esse empréstimo será pago pelo Sistema Francês de Amortização (Tabela Price), sem carência, em 24 prestações, à taxa de juros de 2% a.m., sendo que a primeira prestação vence 1 mês após a contratação do empréstimo.
Por ocasião do pagamento da primeira prestação desse empréstimo, a amortização da dívida foi superior a R$ 6.000,00.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
Para a compra de determinado bem, será tomado um empréstimo de R$ 189.000,00. Esse empréstimo será pago pelo Sistema Francês de Amortização (Tabela Price), sem carência, em 24 prestações, à taxa de juros de 2% a.m., sendo que a primeira prestação vence 1 mês após a contratação do empréstimo.
O valor relativo aos juros pagos na segunda prestação é R$ 3.780,00.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
as prestações diminuem a cada mês.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
o total de juros pagos foi de R$ 2.000,00.
Matemática Financeira - Sistemas de Amortização - Centro de Seleção e de Promoção de Eventos UnB (CESPE) - 2009
a primeira amortização é superior a R$ 16.500,00.
{TITLE}
{CONTENT}
{TITLE}
Aguarde, enviando solicitação...