Questões de Matemática do ano 2006

Lista completa de Questões de Matemática do ano 2006 para resolução totalmente grátis. Selecione os assuntos no filtro de questões e comece a resolver exercícios.

Um restaurante a quilo vende 200 kg de comida por dia, a R$ 12,00 o quilo. Uma pesquisa de opinião revelou que, para cada aumento de R$ 1,00 no preço, o restaurante perderia 10 fregueses, com um consumo médio de 500 g cada. Para um certo preço, o restaurante pode ter uma receita máxima. Essa receita, em reais, é de:

  • A. 4000
  • B. 3690
  • C. 3380
  • D. 3125

Num teatro, quando o preço do ingresso para um espetáculo é P , o número de espectadores que a ele assiste é E. Para cada redução δ no preço do ingresso, há um aumento de espectadores Δ. Para que a receita do espetáculo seja máxima, o ingresso deve ter o seguinte preço:

  • A.
  • B.
  • C.
  • D.

Considerem-se as funções quadráticas definidas por y =(a + 1)x2 − 2ax −(3a + 7) na variável x, com o parâmetro a. Todos os gráficos destas funções apresentam uma corda comum. O comprimento da corda é:

  • A.
  • B.
  • C.
  • D.

Sejam  funções ímpares.  Então podemos sempre afirmar que o gráfico de h = f × .g é simétrico com relação ao (à)

  • A.

    eixo dos x.

  • B.

    eixo dos y.

  • C.

    reta y = x.

  • D.

    reta y = - x.

  • E. origem.

Se h(x) = ( f og)(x) , h(x) x2 - 2x +1, g(x) = x +1 e f (x) é uma função quadrática, a soma das raízes de f é

  • A. 1
  • B. 2
  • C. 3
  • D. 4
  • E. 5

NAS QUESTÕES NUMERADAS DE 16 A 40, ASSINALE A ÚNICA ALTERNATIVA QUE RESPONDE CORRETAMENTE AO ENUNCIADO.

A função f: A → B, definida por f(x) = x 3, admite inversa quando seu domínio A e contra domínio B forem:

  • A.

  • B.

  • C.

  • D.

NAS QUESTÕES NUMERADAS DE 16 A 40, ASSINALE A ÚNICA ALTERNATIVA QUE RESPONDE CORRETAMENTE AO ENUNCIADO.

Quando existe uma bijeção entre os conjuntos A e B, é correto afirmar que:

  • A.

    os conjuntos A e B possuem a mesma quantidade de elementos.

  • B.

    não é possível estabelecer qualquer comparação entre a quantidade de elementos dos conjuntos A e B.

  • C.

    a quantidade de elementos do conjunto A é menor do que a quantidade de elementos do conjunto B.

  • D.

    a quantidade de elementos do conjunto B é menor do que a quantidade de elementos do conjunto A.

Uma clínica de fisioterapia oferece três opções de pagamento para os pacientes:

Opção A: uma matrícula de R$ 50,00 e mais R$ 10,00 por sessão de fisioterapia.

Opção B: R$ 15,00 por sessão de fisioterapia, independente do número de sessões do tratamento.

Opção C: um valor fixo de R$ 150,00 para até dez sessões de fisioterapia; as sessões que passarem desse número serão cobradas à razão de R$ 10,00 por sessão.

Nessas condições, podemos afirmar que:

  • A.

    para um paciente que precisa de menos de 10 sessões, a Opção A é mais vantajosa.

  • B.

    para um paciente que precisa de menos de 10 sessões, a Opção B é mais vantajosa.

  • C.

    para um paciente que precisa de menos de 10 sessões, a Opção C é mais vantajosa.

  • D.

    para um paciente que precisa exatamente de 10 sessões, a Opção C é mais vantajosa.

  • E.

    para um paciente que precisa de mais de 10 sessões, a Opção B é mais vantajosa.

Uma função polinomial do segundo grau () x f tem seus zeros nos pontos 1 = x e 5 = x e coeficiente do termo de maior grau unitário. Nessas condições podemos afirmar que:

  • A.

    f (x) = x2 − 5x − 6 .

  • B.

    f (x) = x2 + 6x + 5.

  • C.

    f (x) = x2 − 5x + 6

  • D.

    f (x) é máxima para x = 3 .

  • E.

    f (x) é mínima para x = 3 .

Se a função linear f(x) = mx + b satisfaz a condição

f(7x – 2) = 7f(x) – 2,

 pode-se afirmar, corretamente, que

  • A.

    m = –3b – 1

  • B.

    m = –3b + 1

  • C.

    m = 3b – 1

  • D.

    m =3b + 1

Provas e Concursos

O Provas e Concursos é um banco de dados de questões de concursos públicos organizadas por matéria, assunto, ano, banca organizadora, etc

{TITLE}

{CONTENT}

{TITLE}

{CONTENT}
Provas e Concursos
0%
Aguarde, enviando solicitação!

Aguarde, enviando solicitação...